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We investigate the asymptotic decay of the total correlation function h�1,2� in molecular fluids. To this end,
we expand the angular dependence of h�1,2� and the direct correlation function c�1,2� in the Ornstein-Zernike
equation in a complete set of rotational invariants. We show that all the harmonic expansion coefficients
hl1l2l�r� are governed by a common exponential decay length and a common wavelength of oscillations in the
isotropic phase. We determine the asymptotic decay of the total correlation functions by investigating the pole
structure of the reciprocal �q-space� harmonic expansion coefficients hl1l2l�q�. The expansion coefficients in
laboratory frame of reference hl1l2l�r� are calculated in computer simulations for an isotropic fluid of hard
spherocylinders. We find that the asymptotic decay of h�1,2� is exponentially damped oscillatory for hard
spherocylinders with a length-to-diameter ratio L /D�10 for all statepoints in the isotropic fluid phase. We
compare our results on the pole structure using different theoretical Ansätze for c�1,2� for hard ellipsoids. The
theoretical results show that the asymptotic decay of h�1,2� is exponentially damped oscillatory for all elon-
gations of the ellipsoids.
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I. INTRODUCTION

The asymptotic analysis of pair correlation functions
dates back to the work of Kirkwood �1�, who showed that
the total correlation function h�r� of a fluid with interatomic
potentials decaying faster than a power law can be presented
as a sum of exponential contributions rh�r�
=�nAne−�0,nrcos��1,nr+�n� with An and �n the amplitude
and phase, respectively. Consequently, the asymptotics, i.e.,
the ultimate or leading decay of h�r�, is determined by the
pole or poles closest to the real axis �smallest �0,n�.

The asymptotic behavior of the pair correlation function
plays a significant role in the understanding of interfacial
phenomena in fluids, e.g., it has an impact on the wetting
transition at wall-fluid interfaces �2,3� as well as on the struc-
ture of interfaces between coexisting phases �2,4,5�. For high
temperatures and densities the asymptotic behavior is deter-
mined by repulsive forces, while at low densities and tem-
peratures attractive forces are more important and correla-
tions exhibit monotonic decay. Considering a one-
dimensional model, Fisher and Widom showed that there
exists a line in the temperature-density plane where the
asymptotic decay of the pair correlation function crosses
over from monotonic to exponentially damped oscillatory
behavior �6�. The authors also conjectured that a similar tran-
sition should occur in three-dimensional systems provided
that the potential is short-ranged. The Fisher-Widom line was
calculated for three-dimensional model fluids, e.g., the
square-well fluid �3�, Lennard-Jones fluid �7,8�, �screened�
Coulombic fluids �9,10�, hard-core attractive Yukawa fluids
�11�, general binary mixtures �12�, screened-Coulomb
charged hard-sphere binary fluids �13�, binary Gaussian core
mixtures �14�, colloid-polymer mixtures �15�, binary star-
polymer solutions �16�, and binary hard-sphere mixtures
�17,18�. The asymptotic decay of the radial distribution func-
tion g�r� is determined by investigating the pole structure of
the structure factor S�q� �3,12�. Moreover, the asymptotic

decay was also studied recently in computer simulations for
a truncated Lennard-Jones and a hard-sphere fluid �19�. Here,
the longest range decay of the total correlation function
h�r�=g�r�−1 was determined by calculating the direct corre-
lation function c�r� from the simulated h�r� using the
Ornstein-Zernike equation. In conclusion, the asymptotic de-
cay of pair correlations in simple fluids is well-studied by
now. This should be contrasted to molecular fluids, which
show the existence of orientational degrees of freedom that
interplay in a nontrivial way with the translational degrees of
freedom. To the best of our knowledge, we are not aware of
any study on the asymptotic decay of the total correlation
function h�1,2� in fluids interacting with anisotropic pair po-
tentials.

In this paper, we give a brief summary of the asymptotics
of the pair correlation function of a fluid with short-ranged
spherically symmetric pair potentials and we give a generali-
zation for fluids interacting with anisotropic interaction po-
tentials. Expanding the Ornstein-Zernike �OZ� equation in a
complete set of rotational invariants, we show that in the
isotropic phase the asymptotic decay of all r-frame harmonic
expansion coefficients hl1l2l�r� is governed by a common ex-
ponential decay length and a common wavelength of oscil-
lations. The asymptotic decay is determined by the pole with
the slowest exponential decay of the q-space harmonic ex-
pansion coefficient hl1l2l�q�, which is related through a Han-
kel transform to the r-space harmonic expansion coefficient
hl1l2l�r�. Analogous to our previous study of the truncated
Lennard-Jones fluid �19�, we measure the space-fixed har-
monic expansion coefficients of the total correlation function
hl1l2l�r�, extract the expansion coefficients of the direct cor-
relation function cl1l2l�r� using the harmonic expansion of the
OZ equation, and determine the asymptotic behavior from
the latter. We compare our results for c�1,2� with some the-
oretical Ansätze for c�1,2�.

The paper is organized as follows: in Sec. II, we briefly
discuss the asymptotics of the pair correlation function of a
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simple fluid with spherically symmetric pair potentials, and
we give a generalization for fluids interacting with aniso-
tropic pair potentials. In Sec. III, we present details on the
simulations, from which we obtain the direct correlation
function. The results of c�1,2� are compared with several
theoretical Ansätze. Finally, the results are discussed in Sec.
IV.

II. THEORY

A. Simple fluids

Below, we give a brief outline of the asymptotic decay of
the pair correlation function of a fluid with short-ranged,
spherically symmetric interaction potentials. For more de-
tails, we refer the reader to Refs. �3,12�. The asymptotics of
the total pair correlation function h�r�=g�r�−1 is most easily
determined by investigating the pole structure of the struc-
ture factor S�q�.

In an isotropic homogeneous bulk fluid, all correlation
functions depend on the absolute distance and the Ornstein-
Zernike �OZ� equation reads

h�r� = c�r� + �� dr�c��r − r���h�r�� , �1�

where � is the bulk density. The OZ equation relates the total
pair correlation function h�r� to the direct correlation func-

tion c�r�. The three-dimensional Fourier transform f̂�q� of a
spherically symmetric function f�r� reads

f̂�q� = 4��
0

�

dr r2f�r�
sin qr

qr
,

f�r� =
1

2�2�
0

�

dq q2 f̂�q�
sin qr

qr
, �2�

and the OZ equation �1� in Fourier representation reads

ĥ�q� =
ĉ�q�

1 − �ĉ�q�
, �3�

where the convolution theorem is used. Applying the inverse
Fourier transform, one obtains

rh�r� =
1

4�2i
�

−�

�

dqqeiqr ĉ�q�
1 − �ĉ�q�

. �4�

For short-ranged or exponentially decaying pair potentials,
where c�r� decays faster than a power law, the asymptotic

behavior of rh�r� is determined by the poles of ĥ�q�, i.e.,
complex values of the wave number q=�1+ i�0 that satisfy

1 − �ĉ�q� = 0. �5�

Here �0 ,�1�R. Eq. �4� can be evaluated by performing the
contour integration on an infinite semicircle in the upper half
plane, and provided all poles are simple, one obtains

rh�r� = �
n

Rneiqnr, �6�

where qn is the nth pole and 2�Rn is the corresponding resi-
due of qĉ�q� / �1−�ĉ�q�� at q=qn. The poles can be found by
equating the real and imaginary part in Eq. �5�, yielding the
following set of equations for �1 and �0:

�1 = 4���
0

�

dr r2c�r�
sinh��0r�

�0r
cos��1r�

1 = 4���
0

�

dr r2c�r�cosh��0r�
sin��1r�

�1r
.	 �7�

Provided c�r� is known for a given state point, this set of
equations can be used to find the poles. In general, an infinite
number of poles can be expected. However, the pole or poles
with the smallest imaginary part of qn has the slowest expo-
nential decay, and dominates the asymptotic behavior or
longest range part of h�r�. Two scenarios are possible: �i�
Pure exponential decay dominates at longest range, if a pole
lying on the imaginary axis, i.e., q= i�0, has the smallest
value of �0. The pure imaginary pole can be obtained from
the first equation of Eq. �7� with �1=0. Using Eq. �6�, we
find that the contribution of a pure imaginary pole to rh�r� is
rh�r�
A exp�−�0r� with 2�A the corresponding residue.
�ii� Exponentially damped oscillatory decay with a wave-
length 2� /�1 dominates at longest range, if a conjugate pair
of poles q= ±�1+ i�0 has a smaller imaginary part than the
pure imaginary pole. The decay of rh�r� at longest range is
then determined by the contribution of the conjugate pair of
complex poles: rh�r�
2�A�exp�−�0r�cos��1r−��. Explicit
formulas for the amplitude �A� and phase � are given else-
where �10,12�.

For potentials, which are purely repulsive and of finite
range, c�r� is predominately negative for all r and hence no
solution can be found for a pure imaginary pole. We mention
that the rapidly decaying tail in c�r� outside the core, which
was found in simulations �20�, does not play a significant
role for the asymptotic decay �19�. Consequently, one ex-
pects exponentially damped oscillatory decay for fluids inter-
acting with purely repulsive short-ranged potentials.

B. Molecular fluids

In molecular liquids, the interaction potential and hence
the correlation functions, depend no longer only on the ab-
solute center-of-mass distance of the two particles, but also
on their orientations. We stress that this even holds in the
isotropic phase. Consequently, the structure in molecular flu-
ids is described by the total correlation function
h�r1 ,u1 ,r2 ,u2��h�1,2�, where r1 and r2 are the center-of-
mass coordinates of particle 1 and 2, and u1 and u2 denote
the unit vectors defining the orientations of the molecules.
The interaction potential in molecular systems is usually
very complicated, i.e., Lennard-Jones potentials for each in-
dividual atom in a molecule and thus the orientational de-
grees of freedom mixes in a nontrivial way with the transla-
tional degrees of freedom. In this paper, we limit ourselves to
uniaxially symmetric particles, which are invariant under in-
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version of their principle axis. A simple model to study the
interplay of translational and rotational degrees of freedom is
a fluid consisting of hard spherocylinders or hard ellipsoids
of revolution. These systems serve as simple models for mo-
lecular fluids and lyotropic liquid crystals.

It is convenient to expand the total correlation function in
a complete set of angular functions with expansion coeffi-
cients depending on the separation r= �r12� with r12�r1−r2
�21�. There are two common choices for this expansion. In
one expansion, the molecular orientations are referred to an
intermolecular reference frame in which the polar axis is
along the intermolecular vector r12. In the other expansion,
the molecular orientations are defined in a space-fixed or
laboratory frame of reference. Here, we employ the latter
expansion:

f�r,u1,u2� = �
l1l2l

f l1l2l�r��l1l2l�u1,u2,ur� , �8�

where ur is the unit vector in the direction of r12, and f l1l2l�r�
are the harmonic expansion coefficients based on a labora-
tory reference frame. The rotational invariants
�l1l2l�u1 ,u2 ,ur� are given by �22�

�l1l2l�u1,u2,ur�

= �
m1m2m

C�l1l2l;m1m2m�Yl1m1
�u1�Yl2m2

�u2�Ylm
* �ur�

�9�

with C�l1l2l ;m1m2m� the Clebsch-Gordon coefficient, Ylm�u�
the spherical harmonics, and * indicates the complex conju-
gate. Selection rules require that l1 , l2 , l form a triangle, for
example, l must obey �l1− l2�� l� �l1+ l2� �21�.

Since our particles have uniaxial and head-to-tail symme-
try, l1 , l2 , l are all even and the harmonic expansion coeffi-
cients satisfy the symmetry property hl1l2l�r�=hl2l1l�r� �22�.
Moreover, all of the harmonic expansion coefficients are
real, and consequently, their transforms in Fourier space are
even.

The direct correlation function c�1,2��c�r1 ,u1 ,r2 ,u2� is
defined through the Ornstein-Zernike equation

h�1,2� = c�1,2� +
�

4�
� dr3du3c�1,3�h�3,2� , �10�

where � is the number density. Expanding c�1,2� and h�1,2�
in rotational invariants �8�, and applying the Fourier trans-
form, one obtains �21�

hl1l2l�q� = cl1l2l�q� + �4��−3/2� �
l3l�l�

hl3l2l��q�cl1l3l��q�Kl�l�l3

l1l2l

�11�

with the coefficients

Kl�l�l3

l1l2l = �2l� + 1��2l� + 1��l� l� l

0 0 0

�l1 l2 l

l� l� l3
� ,

�12�

where

�l� l� l

0 0 0

 and �l1 l2 l

l� l� l3
�

are the 3j and 6j symbols, respectively. Here the r-space
harmonic expansion coefficients f l1l2l�r� are related to the
q-space harmonic expansion coefficients f l1l2l�q� through a
Hankel transform

f l1l2l�q� = 4�il�
0

�

drr2jl�qr�f l1l2l�r� ,

f l1l2l�r� =
4�

�2��3 �− i�l�
0

�

dqq2jl�qr�f l1l2l�q� , �13�

where jl�qr� is the spherical Bessel function. For l=0, the
Hankel transform coincides with the Fourier transform �2�.

The pole analysis for simple fluids described in Sec. II A
can be extended to molecular fluids. If we truncate the ex-
pansion by imposing an upper limit l1 , l2 , l� lmax, the set �11�
can be solved by rewriting it as a simple matrix equation
Aijhj =ci. The component j of vector h is short for j= �l1l2l�,
the q dependence is dropped for clarity and the elements of
matrix Aij are functions of cl1l2l�q�. We give explicit expres-
sions for Aij in Appendix B for lmax=2. It is straightforward
to derive that hj = �A−1� jici where �A−1� ji= �A�ij / �A� with �A�ij
the cofactor of matrix element Aji. Hence hl1l2l�q� can be
expressed as a function of cl1l2l�q� in the form hl1l2l�q�
=Dl1l2l�q� /D�q�. Here D�q�= �A� is the determinant of the co-
efficients matrix of Eq. �11� and the determinants Dl1l2l�q�
are dependent on the indices �l1l2l�. Both determinants are
polynomials in cl1l2l�q� �23�.

The total pair correlation function can now be expressed
as

hl1l2l�r� =
�− i�l

2�2 �
0

�

dq q2jl�qr�
Dl1l2l�q�

D�q�
. �14�

By analogy with Eq. �4�, the asymptotic behavior of hl1l2l�r�
is determined by the poles of hl1l2l�q�. This is similar to the
case of binary mixtures, for which it was shown explicitly
that a common denominator exists for all partial pair corre-
lation functions in Ref. �12�. We stress that the situation here
is more complicated than in the case of binary mixtures,
although formally there exists a common denominator for all
hl1l2l�q� �12�. The matrix equation �11� decouples into sepa-
rate subsets each corresponding to a different value of l2. In
Appendix A we show explicitly that in the case of binary
mixtures the determinant of the subsets are all equal. For
molecular fluids, the coefficients matrix of Eq. �11� has a
block structure, but the dimension of the determinants varies
for different values of l2 as the selection rules exclude certain
values of l1 , l2 , l for the expansion coefficients. We now
define �A�l2�� as the determinant of block l2. The expansion
coefficient can be expressed as hj = �A−1� jici where

�A−1� ji= �A�ij / �A� with �A�=�l2�
�A�l2���, and �A�ij

= �A�l2��ij�l2��l2
�A�l2����. Hence �A−1� ji reduces to �A−1� ji

= �A�l2��ij / �A�l2��. The asymptotic behaviour of the total corre-

ASYMPTOTIC DECAY OF THE PAIR CORRELATION … PHYSICAL REVIEW E 72, 021202 �2005�

021202-3



lation functions is determined by the poles and residues of hj
and are thus determined by the zeros of the denominator
�A�l2��.

Consequently, only the harmonics belonging to a particu-
lar subset corresponding to a certain value of l2 share the
same determinant and the same pole structure. It should be
noted that the determinants for all the subsets contain all the
cl1l2l�q� expansion coefficients, which are allowed by the se-
lection rules.

Employing the symmetry property that the harmonic ex-
pansion coefficients are invariant under l1↔ l2 permutation,
we can conclude that determinants corresponding to blocks
with different values of l2, being not equal in general, do
share the zeros, and thus all the expansion coefficients again
share the same pole structure.

This is similar to the case of �binary� mixtures, where the
total pair correlation functions h�	�r� of species � and 	
possess the same characteristic decay length and, if present,
oscillatory wavelength for the asymptotic decay �12,14�.
This analogy is clear as each harmonic expansion coefficient
in the expansion of the Ornstein-Zernike equation can be
regarded as a separate species in a multi component mixture.
It also means that the decay of correlations between two
molecules at large distances from each other does not depend
on their relative orientations but is determined by the integral
properties of the fluid in between. We note that the ampli-
tudes A and the phases � are dependent on the indices �l1l2l�.

As mentioned before, Eq. �11� separates into independent
subsets corresponding to different values of l2. The most
convenient subset is certainly the one corresponding to l2
=0. Selection rules imply that the only nontrivial expansion
coefficients in this set are those of type hl0l�q��hl�q�. The 6j
symbol contains now a zero in one of the six positions. Em-
ploying the symmetry property that the 6j symbol is invari-
ant under permutations of the columns, one can evaluate the
6j symbol as follows:

�l1 0 l

l� l� l3
� = �l1 l 0

l� l3 l�
�

= �− �l1+l�+l���2l1 + 1��2l� + 1��−1/2
l1l
l�l3
.

�15�

The corresponding set simplifies to a simple matrix equation,
which reads

hl�q� = cl�q� + ��
k

blk�q�hk�q� , �16�

where the coefficients blk�q� are defined as

blk�q� = �4��−3/2�2k + 1

2l + 1 �
m

�2m + 1��m k l

0 0 0

clkm�q�

�17�

with blk�q�=bkl�q��2k+1� / �2l+1�. The asymptotic behavior
of hl0l�r��hl�r� is determined by the poles of hl�q�,

D�
lk − �blk��1 + i�0�� = 0. �18�

Thus the complex values of q=�1+ i�0, at which one of the
eigenvalues of �blk�q� equals 1, govern not only the
asymptotic decay of the harmonic expansion coefficients of
type hl0l�r� but also of all the other expansion coefficients.
The q-space coefficients blk�q� can be obtained by employ-
ing the Hankel transform �13� of cl1l2l�r�. In the case of
simple fluids, lmax can be set to 0 and Eq. �18� simplifies to
Eq. �5�. We follow the convention, where c000�r�
= �4��3/2c�r�, with c�r� the direct correlation function aver-
aged over all possible orientations.

We employ the following expression for the spherical
bessel functions:

jn�x� = mn+1�x�sin�x� + pn�x�cos�x� , �19�

where mn+1�x� and pn�x� are polynomials of order −�n+1�
and −n, respectively, which can be obtained from the recur-
rence relations �24�. The integration limits in Eq. �14� can be
extended to �−� ,�� and the resulting integral �20� can be
carried out by contour integration,

hl�r� =
�− 1�l/2

4�2 �
−�

�

dqq2exp�iqr��− iml+1�qr� + pl�qr��

�
Dl�
lk − �blk�q��
D�
lk − �blk�q��

. �20�

Provided all the poles are simple and leaving only the lead-
ing order, we find

rl+1hl�r� =
�− �l/2Ml+1

2�
�

n

qn
1−l Dl�
lk − �blk�qn��

D��
lk − �blk�qn��
exp�iqnr� ,

�21�

where Ml+1 is the coefficient of the leading power in
ml+1�qnr� and D��
lk−�blk�qn�� denotes the derivative of the
determinant of Eq. �18� at q=qn. Equation �21� generalizes
the corresponding expression for simple fluids, and can be
used to determine the character of asymptotic decay of cor-
relations in molecular fluids provided the harmonic expan-
sion coefficients cl1l2l�r� are known. If the pole with the low-
est imaginary value lies on the imaginary axis then the
asymptotic decay is pure exponential, otherwise it is deter-
mined by a conjugate pair of poles and the asymptotic decay
is exponentially damped oscillatory.

The number of harmonic expansion coefficients grows
very quickly as lmax increases. However, the determinant in
Eq. �18� can be expanded in the density. If we keep only the
linear terms in the density, Eq. �18� simplifies to

�4��−3/2��
lm

�2m + 1��m l l

0 0 0

cllm��1 + i�0� = 1.

�22�

In the low density approximation only the diagonal expan-
sion coefficients of the form cllm�r� determine the asymptotic
decay of the correlations.
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III. HARD-ROD FLUIDS

The occurrence of both pure imaginary and complex poles
in simple fluids is a consequence of the fact that the pair
potential contains attractive and repulsive parts. In the case
of simple fluids interacting with purely repulsive short-
ranged potentials, the asymptotic decay is exponentially
damped oscillatory, as the direct correlation function is nega-
tive �or close to zero� for all distances �19�. For instance, the
asymptotic decay of h�r� in the hard-sphere fluid is exponen-
tially damped oscillatory for all statepoints, even for very
low densities. More significantly, perhaps, we did not find
any pure imaginary pole that can give rise to monotonic
asymptotic decay, using simulation data �20� for the c�r� of
hard spheres �19�. For molecular fluids interacting with
purely repulsive short-ranged potentials, there is no such
simple argument about whether the asymptotic decay is ex-
ponentially damped oscillatory or monotonic. The aim of this
paper is to study the asymptotic decay of the pair correla-
tions in fluids consisting of hard spherocylinders and hard
ellipsoids. In particular, we explore whether a pure imagi-
nary pole can be present in hard-rod fluids and, if so, we
investigate whether there is a crossover from damped oscil-
latory decay for hard spheres to monotonic decay upon in-
creasing the aspect ratio. To this end, we determine the har-
monic expansion coefficients of the direct correlation
function cl1l2l�r� by simulations for hard spherocylinders and
by different theoretical Ansätze for hard ellipsoids. We de-
scribe the simulation results in Sec. III A and the theoretical
results in Sec. III B.

A. Simulations

We perform Monte Carlo simulations of an isotropic fluid
of hard spherocylinders, consisting of a cylindrical part with
diameter D and length L, and capped with hemispheres of
diameter D at both ends. Note that the full length of the rod
is equal to L+D. We wish to determine the harmonic expan-
sion coefficients of the direct correlation function in labora-
tory frame. The approach is similar to Ref. �19�, where the
Ornstein-Zernike equation was used to determine the direct
correlation function c�r� from the total correlation function
h�r� measured directly in simulations. In contrast to experi-
ments, where only information of a few harmonics are di-
rectly accessible, computer simulations provide a way to
measure all the expansion coefficients of the pair correlation
function. To this end, we calculate the harmonic expansion
coefficients gl1l2l�r� in bins of width �r. By applying the
orthogonality condition of the spherical harmonics, Eq. �8�
can be inverted to yield �25�

gl1l2l�rj� =
�4��3/2��2l1 + 1��2l2 + 1��2l + 1��1/2

�V�rj�C�l1l2l;000�N

���
i=1

nj

Pl1
�cos �1�Pl2

�cos �2�Pl�cos �r�� ,

�23�

where N is the number of particles, nj is the number of par-

ticle pairs whose center-of-mass distances are within a range
of rj ±�r /2 ,V�rj� denotes the volume of the spherical shell
of thickness �r centered at rj, and C�l1l2l ;000� are the
Clebsch-Gordan coefficients. The standard polar and azi-
muthal angles ui= ��i ,
i� are used for the orientations of
particle i with 0��i�� and 0�
i�2�.

The only relevant parameters that determine the thermo-
dynamic properties of a fluid of hard spherocylinders are the
number density and the length-to-diameter ratio L /D. We
perform simulations of a system consisting of hard sphero-
cylinders with a length-to-diameter ratio of L /D=5 and 10 at
densities below the bulk isotropic-nematic transition. The
densities of the coexisting isotropic phase read �L/D=5

I =0.40
and �L/D=10

I �0.24 �26�. The simulations are started from an
initial configuration with all the center-of-masses of the rods
distributed randomly in the simulation box, but all the orien-
tations aligned along one direction. We check for equilibrium
by monitoring the nematic order parameter. When equilib-
rium is reached, we perform production runs of 106 sweeps.
The harmonic expansion coefficients of the pair correlation
function are sampled every sweep up to lmax=10. The gl1l2l�r�
profiles are accumulated in bins of width �r=D /10. The
simulations are computationally more expensive with in-
creasing L /D. For instance, the simulation for L /D=10 at a
density just below the bulk isotropic-nematic transition takes
about two months of “500-MHz R14000” processor time. We
are therefore restricted to length-to-diameter ratios L /D
�10.

In contrast to earlier simulations, where the expansion
coefficients were sampled in molecular frame for calculating
c�1,2� in fluids of hard ellipsoids �27�, we are able to apply
the Hankel transform directly to obtain the set of gl1l2l�q�
from which we can extract hl1l2l�q� through hl1l2l�q�
=gl1l2l�q�− �4��3/2
0l1


0l2

0l. Subsequently, we solve the set

�11� to find cl1l2l�q�. Applying the inverse Hankel transform,
we obtain the harmonic expansion coefficients cl1l2l�r�. Fig-
ure 1 shows simulation results for a fluid of N=600–1200
hard spherocylinders in a volume V with L /D=10 and pack-
ing fraction �= ��D3 /6+�LD2 /4�N /V=0.1592. Figure 1
shows only a selection of the harmonic expansion coeffi-
cients cl1l2l�r�. As also found in previous simulation studies
�27,28�, all the functions are short-ranged. Moreover, the
functions decay rapidly outside the overlap region r�L+D.
At small r, the accuracy of cl1l2l�r� decreases significantly
with increasing values of l1 , l2 , l, which is due to the trunca-
tion of the Hankel transform. However, this does not have a
strong impact on the values obtained for the poles �19�. Fig-
ure 1 shows that the position-position correlation function
c000�r� is negative inside the core, while the orientation-
orientation correlation function c220�r� is mostly positive, in-
dicating an effective attraction between the rods with similar
orientations. Figure 2 shows c000�r� for a hard spherocylinder
fluid with L /D=5 and 10 at varying packing fractions. The
direct correlation function averaged over all possible orien-
tations, i.e., c000�r�, is negative inside the core independent
of L /D, while it oscillates close to zero outside the core. This
is similar to the case of hard spheres with diameter D. Groot
et al. found a rapidly decaying tail in c�r� with �c�r���0.01
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for r�2D using simulation data for h�r� in the OZ equation
�20�. We observe clearly in Fig. 2 that c000�r� becomes more
negative inside the core as the packing fraction increases and
the effect of repulsion becomes more important.

B. Model functions

In addition to the simulations, we also use two theoretical
model expressions for the direct correlation function. The
first one is the Pynn �29� and Wulf �30� Ansatz: cPynn�1,2�
=cHS�r /��1,2� ,��, where cHS is the hard-sphere function
evaluated at the same packing fraction � as the molecular
fluid, and ��1,2�=��û1 , û2 , r̂12� is the closest approach dis-
tance for given orientations of molecules and center-center
vector. The latter can easily be calculated for hard ellipsoids
of revolution �31�. Another Ansatz, we employ is due to Par-
sons �32� and Lee �33�. It approximates the direct correlation
function by a density-scaled Mayer function cParsons�1,2�
=����f�1,2�. The Mayer function f�1,2�=−1 for r
���1,2� and f�1,2�=0 for r���1,2�. The weight function
reads ����= �1−� /4� / �1−��4, which produces an accurate
equation of state for hard spheres. We calculate the harmonic
expansion coefficients for cl1l2l�r� of a fluid consisting of
hard ellipsoids using the Pynn-Wulf and Parsons-Lee ap-
proximations. A selection of cl1l2l�r� is shown in Fig. 3 for
hard ellipsoids with an elongation of a /b=11 and packing

fraction �=�ab2N /6V=0.1592. The major and minor axis of
the ellipsoids are denoted by a and b, respectively. For the
theoretical Ansätze, we calculate only those harmonics that
are required for the low density approximation �22� with
lmax=10. While the particle shape is different in our simula-
tions and in our theories, the overall features of cl1l2l�r� are
similar. For instance, in both simulation and theory, c000�r� is
negative, and c220�r� and c440�r� are mostly positive inside
the overlap region r /b�11, and decay rapidly outside the
overlap region. In contrast to the reasonable agreement of the
theoretical Ansätze in the partial overlap region 1�r /b
�11, they fail dramatically inside the core region r /b�1.
The Parsons-Lee scaling breaks down inside the core r /b
�1 as it depends on the Mayer f�1,2� function which is
identically equal to −1. Hence only c000�r� is different from
0. The Pynn-Wulff approximation predicts an isotropic func-
tion in the limit r→0 and it fails to describe the harmonics
which are not equal to zero at r=0. We refer the reader to
Ref. �27� for a more detailed comparison of simulation and
theory results for c�1,2�.

FIG. 1. The selected harmonic expansion coefficients of the di-
rect correlation function cl1l2l�r� with l1l2l=000, 220, 222, 440, 442,
and 664 for a fluid of hard spherocylinders with L /D=10 and pack-
ing fraction �=0.1592 obtained from simulations.

FIG. 2. Simulation results for the harmonic expansion coeffi-
cient of the direct correlation function c000�r� for a fluid of hard
spherocylinders with a length-to-diameter ratio L /D=5 �top� and
packing fractions — �=0.1288, -- �=0.2003, ¯ �=0.3694, and
L /D=10 �bottom� and packing fractions — �=0.0922, -- �
=0.1257, ¯ �=0.1927.
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IV. RESULTS AND DISCUSSION

We investigate the asymptotic decay of the total pair cor-
relation functions for a fluid of hard rods. We obtain the
leading poles of hl1l2l�q� for a hard spherocylinder fluid by
solving Eq. �18� employing the harmonic expansion coeffi-
cients of the direct correlation functions obtained from simu-
lations, which were described in Sec. III A. In order to locate
the pure imaginary pole, we consider only the real part of Eq.
�18� with the fixed value of �1=0. Results for the pure
imaginary pole and the pole off the imaginary axis with the
smallest value of �0 are shown in Fig. 4 for hard spherocyl-
inders with L /D=5 and 10, at varying densities in the iso-
tropic phase ranging from very dilute to just below the den-
sity at the bulk isotropic-nematic transition, and lmax=10. For
comparison, we also plot the results for the leading poles by
solving Eq. �7�, i.e., using only c000�r�, corresponding to
lmax=0, as in the case of spherically symmetric pair potential,
and by solving Eq. �22� with lmax=10, which is based on a
low density approximation. We also check for convergence
with respect to lmax in Eq. �18� for L /D=10. The results for
lmax=2 for the lowest-lying conjugate pair of poles are shown
by a dashed line in Fig. 4. We find that it approaches the
results of lmax=10 very closely. For the pure imaginary pole,
we find bad convergence for lmax=2, while good agreement
is found for lmax=4. The crossed squares denote the results
for lmax=4. For all our simulations, we find that lmax=10 is

sufficient to provide good convergence. Figure 4 shows that
the period 2� /�1 obtained from the low density approxima-
tion �22� is larger than that obtained from the lmax=0 ap-
proximation �7�. On the other hand, the inverse decay length
�0 from the low density approximation with lmax=10 �22� is
smaller than that of the lmax=0 approximation �7�. The poles
calculated using lmax=10 in Eq. �18� lie between the two
approximations of Eqs. �7� and �22�.

In the case of the low density approximation �22� and the
lmax=0 approximation �7�, we did not find a pure imaginary
pole for L /D=5 and we plot only the lowest-lying conjugate
pair of poles in Fig. 4 for the two approximations. For

FIG. 3. The selected harmonic expansion coefficients of the di-
rect correlation function cl1l2l�r� with l1l2l=000, 220, 222, 440, 442,
and 664 for a fluid of hard ellipsoids with elongation a /b=11 and
packing fraction �=0.1592 obtained from the Pynn-Wulff �29,30�
�dotted� and Parsons-Lee �32,33� �short-dashed� Ansätze.

FIG. 4. The imaginary ��0� and real ��1� part of the leading
poles obtained from simulations of a fluid of hard spherocylinders
with a length-to-diameter ratio L /D=5 �left� at packing fraction �
=0.1288, 0.2003, and 0.3694, and L /D=10 �bottom� at �=0.0922,
0.1257, 0.1591, and 0.1927. The arrows denote the direction, in
which � is increased. The symbols with �1=0 refer to the pure
imaginary pole �open symbols� while those with �1L /2�
1.3 refer
to the lowest-lying complex pair q= ±�1+ i�0 �filled symbols, only
the pole with �1�0 is shown�. The circles denote the results using
the lmax=0 approximation �7�, the triangles show the results using
the low density approximation �22� with lmax=10, and the squares
the results for lmax=10 in Eq. �18�. The dashed line show the results
for lmax=2 in Eq. �18� for the complex pole, while the crossed
squares denote the results for lmax=4 for the pure imaginary pole,
showing the good convergence of lmax for L /D=10.
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L /D=10, we do find a pure imaginary pole for the low den-
sity approximation �22� using lmax=10, while it is absent for
the lmax=0 approximation �7�. In Table I, we summarize the
presence or absence of the pure imaginary poles using dif-
ferent approximations and varying L /D. We conclude that
the appearance of a pure imaginary pole is more related to
the positive parts of the higher harmonic expansion coeffi-
cients in Eq. �18� than to the tiny positive tail in c000�r�
outside the core region. As for L /D=10, the pure imaginary
pole can even be found using the low density approximation
with lmax=10 in contrast with L /D=5, it is tempting to argue
that the occurrence of the monotonic pole is less sensitive for
larger L /D. In addition, we found good convergence for the
value of the monotonic pole using lmax=4 in Eq. �18� for
L /D=10, and we can argue that the occurrence of the mono-
tonic pole is due to the positive part of c220�r� and c440�r�.

As expected, the inverse decay length �0 decreases with
increasing density. The variation of the period 2� /�1 is weak
and changes roughly from 0.85 L to 0.70 L with increasing
density. We find that the imaginary part of both the pure
imaginary pole and the lowest-lying complex pole becomes
smaller, upon increasing the density toward the value at the
isotropic-nematic transition. In addition, the difference be-
tween the two imaginary parts decreases with increasing den-
sity. However, we find that for all statepoints in Fig. 4, the
complex pole has always the smallest value of �0. Conse-
quently, the asymptotic decay of the total pair correlation
function is exponentially damped oscillatory for a fluid of
hard spherocylinders with L /D�10 at all densities in the
isotropic fluid phase. For packing fractions just below the
bulk isotropic-nematic transition, the pure imaginary pole
and the lowest-lying complex pole ��1�L+D� /2�, �0�L
+D� /2�� are given by �0, 0.53� and �1.44, 0.35� for L /D
=5, and for L /D=10 by �0, 0.57� and �1.36, 0.50�. The dif-
ference between the imaginary parts of the imaginary and the
complex pole decreases from 0.18 for L /D=5 to 0.07 for
L /D=10. As our simulations are limited to L /D�10, we are
unable to investigate whether the monotonic pole will have a
smaller imaginary part than the complex pole and will be-
come dominant upon increasing the aspect ratio. It remains
therefore an open question whether the asymptotic decay of
the total pair correlation function crosses over from exponen-
tially damped oscillatory to monotonic upon increasing the
aspect ratio.

In addition, we performed very long simulations �5
�106 cycles� in order to study the similarity of the decay of
the harmonic expansion coefficients. In Fig. 5, we compare

the simulation results for two harmonic expansion coeffi-
cients of the total correlation function h000�r� and h220�r� for
L /D=10 and �=0.2003. For comparison, we also show the
slope predicted for the exponential decay using the pole
analysis �18�. As the statistical accuracy of h000�r� and
h220�r� is poor, it is hard to make any definite statements on
the decay of the harmonics. However, it is tempting to con-
clude that the two expansion coefficients h000�r� and h220�r�
decay similarly at intermediate range and seem to agree with
the decay predicted by the pole analysis.

We also employ the theoretical results for the direct cor-
relation function as described in Sec. III B in our pole analy-
sis. We obtain the leading poles of hl1l2l�q� for a fluid of hard
ellipsoids using the lmax=0 approximation �7� and the low
density approximation �22� with lmax=10 employing cl1l2l�r�
obtained from the Pynn-Wulff and Parsons-Lee Ansätze. We
did not find a pure imaginary pole using these Ansätze. Com-
paring c220�r� and c440�r� in Figs. 1 and 3, we observe that
the positive part, which is responsible for the occurrence of
the monotonic pole in the simulations, is smaller in the the-
oretical Ansätze and apparently too weak to predict a pure
imaginary pole. Figure 6 shows only results for the lowest-
lying complex pole with the smallest value of �0 for a fluid
of hard ellipsoids with an elongation of a /b=6 and 11, at
varying densities. The inverse decay length �0 decreases
upon increasing the density using the Parsons-Lee approxi-
mation in agreement with simulations. However, the Pynn-
Wulff approximation shows that the value of �0 decreases
and increases later upon increasing the density.

In Fig. 7, we show the lowest-lying complex pole using
the Parsons-Lee approximation for a fluid of hard ellipsoids
for several packing fractions and varying elongations 1
�a /b�25. We only show results using the low-density ap-
proximation �22� with lmax=10. Figure 7 shows that the pe-
riod of the oscillations 2� /�1 scales roughly with the major
axis of the ellipsoids, but decreases slightly upon increasing
a /b. For an elongation equal to 1, the results are in agree-
ment with those for hard spheres �19�.

TABLE I. The occurrence of a pure imaginary pole in simula-
tions of hard spheres �L /D=0� and hard spherocylinders �L /D=5
and 10� using different approximations.

lmax=0,
Eq. �7�

lmax=10,
Eq. �22�

low density
lmax=10,
Eq. �18�

L /D=0 no

L /D=5 no no yes

L /D=10 no yes yes

FIG. 5. The harmonic expansion coefficients of the total corre-
lation functions obtained from simulations for a fluid of hard
spherocylinders with a length-to-diameter ratio L /D=5, and pack-
ing fraction �=0.2003: ��� ln�rh000�r��, + + + ln�rh220�r��. The
dashed line is the slope predicted for the exponential decay using
the pole analysis �18�.
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In conclusion, we have investigated the asymptotic decay
of the total pair correlation functions in fluids consisting of
hard spherocylinders and hard ellipsoids. We determined the
harmonic expansion coefficients of the direct correlation
function cl1l2l�r� by simulations for hard spherocylinders us-
ing the OZ equation and by different theoretical Ansätze for
hard ellipsoids. We have shown that the anisotropy of the
particles plays an important role in the asymptotic decay of
molecular fluids. Although the pair potential is purely repul-
sive for hard rods, we do find the occurence of a pure imagi-
nary pole in our simulation results. However, for all densities
in the isotropic fluid phase, the oscillatory pole has a smaller
imaginary part than the pure imaginary pole, and the
asymptotic decay of the total pair correlation function is
damped oscillatory for length-to-diameter ratios L /D�10. It
remains an open question whether the decay of the total cor-
relation function at longest range crosses over from damped
oscillatory to monotonic upon increasing L /D. Employing

the cl1l2l�r� for hard ellipsoids obtained from the Parsons-Lee
and Pynn-Wulff approximations, no pure imaginary pole was
found. Consequently, the asymptotic decay is predicted to be
exponentially damped oscillatory for all elongations. In this
paper, we have limited ourselves to the asymptotic decay of
pair correlations in bulk fluids of particles interacting with
anisotropic pair potentials. It is interesting to investigate
whether the pole structure given by hl1l2l�q� determines not
only the decay of the total correlation functions in a bulk
fluid but also the decay of the one body density profiles at
wall-fluid interfaces. We plan to study this in future work.
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APPENDIX A: BINARY FLUID MIXTURES

The pole analysis can easily be extended to binary mix-
tures. The OZ equation for a binary �� ,	� mixture in Fourier
space reads �12�

h�	�q� = c�	�q� + �
�

��c���q�h�	�q� , �A1�

where �� is the number density of species �. It is convenient
to write the OZ equation in a simple matrix equation of the
form Aijhj =ci, where component j of vector h is short for j
= ��	�, the q dependence is dropped for clarity, and the ele-
ments of matrix Aij are functions of c�	:

FIG. 6. The imaginary ��0� and real ��1� part of the lowest-
lying conjugate pole q= ±�1+ i�0 �only the pole with �1�0 is
shown� of a fluid of hard ellipsoids with an aspect ratio a /b=6 �top�
and a /b=11 �bottom�. The circles denote the results using the
lmax=0 approximation �7� and the triangles the results using the
low-density approximation �22� with lmax=10 employing the Pynn-
Wulff �29,30� �upper half filled� and the Parsons-Lee �32,33� �left
half filled� Ansätze. The arrows denote the direction, in which the
density is increased. No pure imaginary pole is found.

FIG. 7. The imaginary ��0� and real ��1� part of the lowest-
lying conjugate pole q= ±�1+ i�0 �only the pole with �1�0 is
shown� of a fluid of hard ellipsoids for varying densities in the
isotropic fluid phase and varying aspect ratios a /b=1 ���, 1.5 ���,
3.2���, 6 ���, 11�+�, 25 ��� using the low-density approximation
�22� with lmax=10 and employing the Parsons-Lee �32,33� Ansätze.
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�
1 − �1c11 − �2c12

− �1c12 1 − �2c22

1 − �1c11 − �2c12

− �1c12 1 − �2c22

��
h11

h21

h12

h22

�
=�

c11

c21

c12

c22

� . �A2�

The coefficients matrix Aij has a block structure with identi-
cal blocks for each 	. We define �A�	�� as the determinant of
block 	, which are identical for each 	. It is straightforward
to derive that hj = �A−1� jici where �A−1� ji= �A�ij / �A� with �A�
the product of two identical determinants, �A�=�	�A�	��, and
�A�ij = �A�	��ij���	�A���� the cofactor of matrixelement Aji.
Hence �A−1� ji reduces to �A−1� ji= �A�	��ij / �A�	��. The
asymptotic behavior of the total correlation functions are de-
termined by the poles and residues of hj. As these are deter-
mined by the zeros of a denominator �A�	��, which is identical
for each 	, all hj �h�	�q� exhibit the same pole structure and
all h�	�r�’s have the same asymptotic decay. However, the
amplitudes are dependant on indices �	. It is straightforward
to extend the pole analysis to multicomponent mixtures
yielding that there is only one decay length and �if appli-

cable� one oscillatory wavelength that specifies the
asymptotic decay of all partial total correlation functions
h�	�r�.

APPENDIX B: MOLECULAR FLUIDS

In a similar way, the OZ equation for molecular fluids
�11� can be expressed as a simple matrix equation of the
form Aijhj =ci. The component j of vector h corresponds to
j= �l1l2l�. We give explicit expressions for Aij for lmax=2. We
first set Kl�l�l3

l1l2l to one for all values of �l� , l� , l3 , l1 , l2 , l� and
ignore the selection rules for the indices l1l2l. The matrix
equation reads

�B1�

where Aij
�l2=0�=Aij

�l2=2� and reads

Aij
�l2� =�

1 − �̂c000 − �̂c002 − �̂c000 − �̂c002 − �̂c020 − �̂c022 − �̂c020 − �̂c022

− �̂c000 − �̂c002 1 − �̂c000 − �̂c002 − �̂c020 − �̂c022 − �̂c020 − �̂c022

− �̂c200 − �̂c202 − �̂c200 − �̂c202 1 − �̂c220 − �̂c222 − �̂c220 − �̂c222

− �̂c200 − �̂c202 − �̂c200 − �̂c202 − �̂c220 − �̂c222 1 − �̂c220 − �̂c222

� . �B2�

We define �̂= �4��−3/2�. The coefficients matrix Aij decouples into separate subsets, which are all equal, for each value of l2.
However, if we include Kl�l�l3

l1l2l and employ the selection rules, certain values of l1 , l2 , l for the expansion coefficients vanish
and, we find

�B3�

where

Aij
�l2=0� = �1 − �̂c000 − 5�̂c022

− �̂c202 1 −�1

5
�̂c220 +�10

7
�̂c222� , �B4�

and
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Aij
�l2=2� =�

1 − �̂c000 −�1

5
�̂c022 �10

7
�̂c022

− �5�̂c202 1 −�1

5
�̂c220 − �5�̂c222

−�10

7
�̂c202 −�1

5
�̂c222 1 −�1

5
�̂c220 −

3

7
� 5

14
�̂c222

� . �B5�

The coefficients matrix Aij has still a block structure and
decouples into separate subsets corresponding to different
values of l2. However, the dimension of the subsets differ for
different values of l2. We define �A�l2�� as the determinant of
block l2. The expansion coefficient can now be expressed as
hj = �A−1� jici where �A−1� ji= �A�ij / �A� with �A�=�l2�

�A�l2���, and

�A�ij = �A�l2��ij�l2��l2
�A�l2���. Hence, �A−1� ji reduces to �A−1� ji

= �A�l2��ij / �A�l2��. The asymptotic behavior of the total correla-
tion functions is determined by the poles and residues of hj
�hl1l2l�q� and are thus determined by the zeros of a denomi-
nator �A�l2��. Consequently, only the harmonics belonging to a
particular subset corresponding to a certain value of l2 share

the same determinant and the same pole structure. Employ-
ing the symmetry property that the harmonic expansion co-
efficients are invariant under l1↔ l2 permutation, we find that
the determinants of different blocks, which are not equal in
general, should share the zeros, i.e., hl1l2l�q� should exhibit
the same pole structure as hl2l1l�q�, resulting in the same
asymptotic decay of hl1l2l�r� and hl2l1l�r�. More explicitly, in
the case of lmax=2, we find a common asymptotic decay for
h000�r� and h202�r� and for h022�r�, h220�r�, and h222�r�. The
l1↔ l2 symmetry property yields that the asymptotic decay of
h202�r� and h022�r� are equal and hence all hl1l2l�r� have the
same asymptotic decay.
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